Event
Inorganic Chemistry Seminar, Dr. Justin Sambur, Colorado State
Zooming In: Single-Particle Insights into Nanomaterials for Energy Conversion and Storage
Zooming In: Single-Particle Insights into Nanomaterials
for Energy Conversion and Storage
The first part of my talk will focus on solar energy conversion. The fundamental problem that limits the solar energy conversion efficiency of conventional semiconductors such as Si is that all absorbed photon energy above the band gap is lost as heat. The critical question that our research addresses is: Can we avoid energy losses in semiconductors? Ultrathin 2D semiconductors such as monolayer (ML) MoS2 and WSe2 have unique physical and photophysical properties that could make high-efficiency, hot-carrier energy conversion possible. Our research team has employed photocurrent spectroscopy, steady-state absorption spectroscopy, and in situ femtosecond transient absorption spectroscopy as a function of applied potential to characterize underlying steps in a ML MoS2 photoelectrochemical cell. The rich data set informs us on the timescales for hot-carrier generation/cooling and exciton formation/recombination, as well as the magnitudes of changes in exciton energy levels, exciton binding energies, and the electronic band gap. These findings open the possibility of tuning the hot-carrier extraction rate relative to the cooling rate to ultimately utilize hot-carriers for solar energy conversion applications. The second part of my talk will focus on elucidating charge storage mechanisms in nanoscale materials, which underlies the performance of electrochemical technologies such as batteries and smart windows. I will discuss our high-throughput electro-optical imaging method that measures the battery-like and capacitive-like (i.e., pseudocapacitive) charge storage contributions insingle metal oxide nanoparticles. I will present our single particle-level measurements that show (1) individual particles exhibit different charge storage mechanisms at the same applied potential and (2) particle size-dependent pseudocapacitive charge storage properties.
Host Prof. Mallouk